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Code Demo

Motivation

Automated diagnosis prediction from medical images provides valuable support for clini-
cal decision-making. However, existing methods not only rely on large amounts of anno-
tated data, they are often a black-box. In this work, we introduce Xplainer, a zero-shot
classification-by-description approach, drawing inspiration from how a radiologist inter-
prets an X-ray. Rather than making a direct diagnosis, it identifies and classifies descriptive
observations in the image, building a transparent path to the final prediction. This design not
only makes our model inherently explainable, but also allows for adaptation to new
diseases with known symptoms without the need for additional training or annotated data.

Method

Xplainer - Zero-shot Classification-by-description
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Baseline – Contrastive Pathology-based Prompting [2,3]

Xplainer builds upon BioVil [1], which is a contrastive language-image pretraining (CLIP)
model, trained on radiological images and reports. Instead of predicting clinical findings
directly, we first predict visual observations associated with each finding and then
form a joint probability. For each finding, the list of observations is initially created by
ChatGPT and then refined by experienced radiologists.

Zero-shot Inference:

1. Compute the image embedding for the X-ray image.

2. Compute the text embeddings for observations (and their absence) for each pathology:

There is/are (no) <observation> indicating <pathology>

3. Compute the cosine similarity between each image and text embedding.

4. Estimate the softmax probability for the presence of each observation in the X-ray.

5. Finally, determine the likelihood of each pathology by computing the joint probability:

log(P (p)) =
1

N

N∑
i=1

log(P (oi))

Data

MIMIC III: Large dataset of over 200,000 Chest X-ray images paired with free-text reports.
Used for self-supervised, contrastive language-image pretraining.
CheXpert: Multi-label classification with 14 classes (12 pathologies, ”No Finding”and ”Sup-
port Devices”) of Chest X-rays. Encompasses 200 validation and 500 test samples.
ChestX-ray14: Multi-label classification of 14 pathologies; test set of 25,596 Chest X-rays.
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Results

Explanations

TP: Enlarged Cardiomediastinum with a probability of 0.58 TN: Edema with a probability of 0.15

FP: Pneumonia with a Probability 0.51 FN: Support Devices / Foreign Objects with a probability of 0.48

Zero-Shot Diagnosis

•We evaluated on the CheXpert and ChestX-ray14 datasets for multi-label classification.

•Xplainer achieved state-of-the-art (SOTA) out-of-domain results on both datasets.

•Our performance improvement goes hand in hand with explainability.

CLIP pretraining data CheXpert ChestX-ray14
val test test

CheXzero [2] MIMIC – 74.73 –
Seibold et al. [3] MIMIC 78.86 – 71.23

Seibold et al. [3] MIMIC, PadChest, ChestX-ray14 83.24 – 78.33
(in domain)

Xplainer MIMIC 84.92 80.58 71.73

Ablation on Prompting Styles

•Observation-based prompting outperforms pathology-based prompting by 9%.

•Contrastive prompting outperforms basic prompting with thresholding.

• Specifying the pathology reduces ambiguity and further improves performance by 7%.

•Using a report-style formulation for prompts results in a slight improvement.

AUC
Contrastive pathology-based Prompting ((no) <pathology>) 76.14

Observation-based Prompting:
Basic Prompt (<observation>) 58.65

Contrastive Prompt ((no) <observation>) 77.00
+ pathology Indication (indicating <pathology>) 84.35

+ Report Style (There is/are) 84.92

Radiologist Refinement

•Experienced radiologists improved or removed incorrect and irrelevant descriptors.

•Manually refining with domain knowledge results in a slight performance improvement.

•The already promising results achieved by only relying on ChatGPT demonstrate the
potential of integrating large generic language models into medical image analysis.

CheXpert Val CheXpert Test ChestX-ray14
ChatGPT Prompts 83.61 79.94 71.40
Refined Prompts 84.92 80.58 71.73

Conclusion

We introduce Xplainer, a novel and effective zero-shot approach for chest X-ray diagnosis
that achieves SOTA results in detecting common lung findings. The compositionality of
our classification-by-description method offers intuitive explanations and fine-grained
class customization. Our work highlights the potential of contrastive pretraining combined
with observation-based prompting for medical zero-shot classification, where labeled data is
limited and explainability is crucial.


