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Motivation

Radiology reporting is an omnipresent and crucial task, but can be time-consuming and
error-prone. Structured reporting offers a more efficient and accurate alternative to free-text
reports and allows for a formalized and accurate evaluation of automated generation. Yet,
there’s a research gap in automating this process with no benchmark for method evaluation.
We present Rad-ReStruct, the first structured reporting benchmark enabling the
development of automated structured reporting methods. We further propose hi-VQA, a
hierarchical VQA approach for integrating past questions and answers for accurate report
generation.

Rad-ReStruct Dataset

Large-scale free-text reporting datasets exist, however free-text can be ambiguous, complete-
ness can’t be ensured and objective evaluation is difficult. Rad-ReStruct provides a structured,
detailed and multi-level report template covering multiple sections in Chest X-Ray reports such
as the respiratory, cardiovascular and skeletal system. The hierarchical structure is modeled
after clinical structured reporting templates. By providing this first public structured report-
ing dataset and benchmark, we enable further research in automated structured reporting.
•Our reports provide an accurate summary of findings derived from expert-labeled MeSH
and RadLex codes from the IU-XRay dataset [1]

•Rad-ReStruct encompasses 3720 images and 3597 structured reports with over 180k
question-answer pairs

•We provide a standardized, multi-level evaluation, which enforces consistency

Sections
• Respiratory system 

→ Lung, Pleura, Trachea
• Cardiovascular system
• Skeletal system
• Breast
• Abdomen
• Thorax
• Mediastinum
• Lymph nodes
• Foreign objects

Topics
→ Signs, Diseases, Abnormal regions, 
Objects

Attributes
→ Localization, Descriptions, Degree

Question Hierarchy

Level 1: Topic Existence
Are there any foreign objects?
Are there any signs/diseases in the <section>? 
Is there anything abnormal in the <section>?

Level 2: Element Existence (example questions)
Are there stents?
Is there an opacity in the lung?
Is there pneumonia in the lung?
Is there anything abnormal in the diaphragm?

Level 3: Attributes
In which part of the body? → heart ventricles, middle lobe, ...
Is which area? → left, anterior, ...
What are the attributes? → patchy, round, ...
What is the degree? → mild, severe, ...

Structured Reporting using Hierarchical VQA

hi-VQA is a flexible automated reporting method for consistent report population. Our
method populates the report iteratively from coarse to fine while incorporating the question
context by including previous questions and answers:

•Model: We use EfficientNet-b5 as image encoder combined with pre-trained RadBERT [2]
for text encoding, then a transformer-based fusion is applied, followed by a linear layer for
multi-label classification.

•Answer Selection: We consider only valid answers for each question during both loss com-
putation and prediction.

•Training and Evaluation: teacher forcing on question-answer level during training (gt ques-
tion context) and autoregressive evaluation asking further questions depending on answer
which automatically gives consistent report prediction
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Q1: Are there any signs in the lung? A1: Yes
Q2: Are there any signs in the lung? Yes. Is there 
an opacity? A2: Yes
Q3: Are there any signs in the lung? Yes. Is there 
an opacity? Yes. In which part of the body? A3:
Right lower lobe
Q4: Are there any signs in the lung? Yes. Is there 
an opacity? Yes. In which part of the body? Right 
lower lobe. What are the attributes?
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irregular0

heart1

multiple0

mild0

no1

patchy1

posterior0

retrocardiac1

unspecified0

yes1
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Results

Rad-ReStruct

We evaluate hi-VQA on Rad-ReStruct to set a first baseline for our new benchmark. The
key findings from our experiments on Rad-ReStruct include:

•Modeling the report generation as VQA task improves over a visual baseline, directly
predicting the full classification vector for all questions.

• Leveraging history context enhances accuracy and precision, with a slight dip in recall.
This is especially relevant for intricate attribute questions which gain meaning in context.

•Using the radiology-specific RadBERT [2] encoder improves over a general RoBERTaBASE
model, highlighting the value of domain-specialized text understanding.

domain-specific pretraining data report acc F1 prec recall
Visual baseline none (only general images) 31.3 30.7 65.6 31.2

hi-VQA - no history radiologic reports 26.2 31.9 59.9 34.1
hi-VQA - RoBERTaBASE none (only general text/images) 26.2 31.6 67.9 32.4

hi-VQA radiologic reports 32.6 31.7 70.7 32.1

A deeper dive into performance metrics across different reporting levels reveals impressive
accuracy in identifying sub-topics (objects, diseases, signs, abnormalities), while predicting
lower-level attributes proves to be a more difficult task.

report acc F1 prec recall #paths avg #answers
Level 1 - Topic Existence 36.6 63.8 79.0 63.5 50 2

Level 2 - Element Existence (all) 33.7 72.2 86.0 72.3 432 2
- Diseases 52.4 74.6 83.7 74.9 206 2
- Signs 74.3 74.1 90.1 74.1 130 2

- Abnormal body regions 58.6 69.1 86.4 69.3 64 2
- Objects 90.4 67.8 87.6 67.1 32 2

Level 3 - Attributes 32.6 3.7 60.3 4.4 1988 4.2

VQARad

VQARad serves as a prominent benchmark in medical VQA, which we utilized to further
validate our hi-VQA model:

•Our hi-VQA model, even without historical context, surpasses several existing methods,
especially those devoid of domain-specific joint image-text pretraining.

•With the inclusion of historical data, hi-VQA performs competitively with leading meth-
ods, underscoring the benefit of jointly addressing queries for a single image.

•Again, the domain-specific text encoder proves to be crucial for understanding the ques-
tions better.

Our experiments reinforce the efficacy of hi-VQA in automated radiology reporting, spot-
lighting the benefits of historical context and domain-specific text encoding.

domain-specific pretraining data acc
MEVF radiologic images 66.1
MMQ none 67.0

MM-BERT radiologic images and reports (joined PT) 72.0
CRPD radiologic images 72.7
RepsNet radiologic reports 73.5
M3AE radiologic images and reports (joined PT) 77.0

hi-VQA - no history radiologic reports 74.5
hi-VQA - RoBERTaBASE none (only general text/ images) 72.5

hi-VQA radiologic reports 76.3

Conclusion

The introduction of Rad-ReStruct provides a much needed first benchmark for structured ra-
diology reporting, emphasizing varied levels of clinical accuracy. Our hi-VQA model, with its
history-centric approach, mirrors the workflow of structured reporting, offering interpretability
and potential real-time adaptability for radiologists. Despite good performance on high-level
questions, challenges remain at the attribute-specific levels. Nonetheless, the performance
discrepancy between VQARad and Rad-ReStruct underscores the challenges of fine-grained
structured reporting. We believe this work encourages the community to tackle these chal-
lenges.
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